Chemistry
Bond Enthalpy
Support Materials

[HIGHER]
The Scottish Qualifications Authority regularly reviews the arrangements for National Qualifications. Users of all NQ support materials, whether published by Learning and Teaching Scotland or others, are reminded that it is their responsibility to check that the support materials correspond to the requirements of the current arrangements.

Acknowledgement

Learning and Teaching Scotland gratefully acknowledges this contribution to the National Qualifications support programme for Chemistry.

The publisher gratefully acknowledges permission to use a cartoon image from http://www.featurepics.com/online/Cartoon-Karate-Girl-illustrations370287.aspx
© Nueyer

© Learning and Teaching Scotland 2011

This resource may be reproduced in whole or in part for educational purposes by educational establishments in Scotland provided that no profit accrues at any stage.
Contents

Questions 4
Solutions 6
Bond Enthalpy

Questions

1. Using bond enthalpies, calculate the enthalpy change for the combustion of hydrogen to produce water shown by the equation below.

 \[2\text{H}_2 (g) + \text{O}_2 (g) \rightarrow 2\text{H}_2\text{O} (g) \]

2. Use bond enthalpy values from the data book to calculate the enthalpy change for the following reaction.

 \[\text{CH}_4 (g) + \text{Br}_2 (g) \rightarrow \text{CH}_3\text{Br} (g) + \text{HBr} (g) \]

3. The data book gives the enthalpy of combustion of methane as –891kJ mol\(^{-1}\). Use bond enthalpies to calculate the enthalpy change for this reaction.

 \[\text{CH}_4 (g) + 2\text{O}_2 (g) \rightarrow \text{CO}_2 (g) + 2\text{H}_2\text{O} (g) \]

4. Using bond enthalpy values, calculate the enthalpy change for the following addition reaction.

 \[\text{C}_2\text{H}_4 (g) + \text{HBr} (g) \rightarrow \text{C}_2\text{H}_5\text{Br} (g) \]

5. Use the bond enthalpy values quoted in the data book to calculate the enthalpy change for the hydrogenation of but-1-ene.

 \[\text{C}_4\text{H}_8 (g) + \text{H}_2 (g) \rightarrow \text{C}_4\text{H}_{10} (g) \]

6. Using bond enthalpy values, calculate the enthalpy change for the addition reaction between iodine and propene.

 \[\text{C}_3\text{H}_6 (g) + \text{I}_2 (g) \rightarrow \text{C}_3\text{H}_6\text{I}_2 (g) \]
7. Hydrogen chloride can react with ethyne in a two-stage addition process to give a saturated product. Calculate the enthalpy change for this reaction using bond enthalpy values from the data book.

\[\text{C}_2\text{H}_2 \text{ (g)} + 2\text{HCl (g)} \rightarrow \text{C}_2\text{H}_4\text{Cl}_2 \text{ (g)} \]

8. The data book gives the enthalpy of combustion of ethanol as \(-1367 \text{ kJ mol}^{-1}\). Use bond enthalpies to calculate the enthalpy change for this reaction.

\[\text{C}_2\text{H}_5\text{OH (g)} + 3\text{O}_2 \text{ (g)} \rightarrow 2\text{CO}_2 \text{ (g)} + 3\text{H}_2\text{O (g)} \]

9. Calculate the enthalpy of formation for ethene using the enthalpy of sublimation and bond enthalpy values from the data book.

\[2\text{C (s)} + 2\text{H}_2 \text{ (g)} \rightarrow \text{C}_2\text{H}_4 \text{ (g)} \]

10. The data book quotes the mean bond enthalpy for a carbon-to-carbon double bond (C=C) as 602 kJ mol\(^{-1}\). Use the enthalpy of formation given and bond enthalpies from the data book to calculate the enthalpy of the C=C bond in ethene.

\[2\text{C (s)} + 2\text{H}_2 \rightarrow \text{C}_2\text{H}_4 \quad \Delta H_{\text{formation}} = 52 \text{ kJ mol}^{-1} \]
Solutions

1. Using bond enthalpies, calculate the enthalpy change for the combustion of hydrogen to produce water shown by the equation below.

\[2\text{H}_2 (\text{g}) + \text{O}_2 (\text{g}) \rightarrow 2\text{H}_2\text{O} (\text{g}) \]

Bond breaking Bond making
2 mol H–H = 2 × 432 = 864 4 mol H–O = 4 × 458 = 1832
1 mol O=O = 497

Total energy put in = +1361 kJ Total energy given out = –1832 kJ

\[\Delta H = 1361 - 1832 = \boxed{-471 \text{ kJ mol}^{-1}} \]

2. Use bond enthalpy values from the data book to calculate the enthalpy change for the following reaction.

\[\text{CH}_4 (\text{g}) + \text{Br}_2 (\text{g}) \rightarrow \text{CH}_3\text{Br} (\text{g}) + \text{HBr} (\text{g}) \]

Bond breaking Bond making
4 mol C–H = 4 × 414 = 1656 3 mol C–H = 3 × 414 = 1242
1 mol Br–Br = 194 1 mol C–Br = 285
1 mol H–Br = 362 1 mol H–Br = 362

Total energy put in = +1850 kJ Total energy given out = –1889 kJ

\[\Delta H = 1850 - 1889 = \boxed{-39 \text{ kJ mol}^{-1}} \]
3. The data book gives the enthalpy of combustion of methane as -891kJ mol^{-1}. Use bond enthalpies to calculate the enthalpy change for this reaction.

$$\text{CH}_4 (g) + 2\text{O}_2 (g) \rightarrow \text{CO}_2 (g) + 2\text{H}_2\text{O} (g)$$

<table>
<thead>
<tr>
<th>Bond breaking</th>
<th>Bond making</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mol C–H = 4 × 414 = 1656</td>
<td>2 mol C=O = 2 × 798 = 1596</td>
</tr>
<tr>
<td>2 mol O=O = 2 × 497 = 994</td>
<td>4 mol H–O = 4 × 458 = 1832</td>
</tr>
<tr>
<td>Total energy put in = +2650 kJ</td>
<td>Total energy given out = –3428 kJ</td>
</tr>
</tbody>
</table>

$$\Delta H = 2650 - 3428 = -778 \text{ kJ mol}^{-1}$$

4. Using bond enthalpy values, calculate the enthalpy change for the following addition reaction.

$$\text{C}_2\text{H}_4 (g) + \text{HBr} (g) \rightarrow \text{C}_2\text{H}_5\text{Br} (g)$$

<table>
<thead>
<tr>
<th>Bond breaking</th>
<th>Bond making</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mol C=C = 602</td>
<td>1 mol C–C = 346</td>
</tr>
<tr>
<td>4 mol C–H = 4 × 414 = 1656</td>
<td>5 mol C–H = 5 × 414 = 2070</td>
</tr>
<tr>
<td>1 mol H–Br = 362</td>
<td>1 mol C–Br = 285</td>
</tr>
<tr>
<td>Total energy put in = +2620 kJ</td>
<td>Total energy given out = –2701 kJ</td>
</tr>
</tbody>
</table>

$$\Delta H = 2620 - 2701 = -81 \text{ kJ mol}^{-1}$$
5. Use the bond enthalpy values quoted in the data book to calculate the enthalpy change for the hydrogenation of but-1-ene.

\[
\text{C}_4\text{H}_8 (g) + \text{H}_2 (g) \rightarrow \text{C}_4\text{H}_{10} (g)
\]

Bond breaking
- 1 mol C=C = 602
- 2 mol C–C = 2 × 346 = 692
- 1 mol H–H = 432
- 8 mol C–H = 8 × 414 = 3312

Bond making
- 3 mol C–C = 3 × 346 = 1038
- 10 mol C–H = 10 × 414 = 4140
- 2 mol C–I = 2 × 213 = 426
- 1 mol I–I = 149

Total energy put in = +5038 kJ

Total energy given out = –5178 kJ

\[\Delta H = 5038 - 5178 = -140 \text{ kJ mol}^{-1}\]

6. Using bond enthalpy values, calculate the enthalpy change for the addition reaction between iodine and propene.

\[
\text{C}_3\text{H}_6 (g) + \text{I}_2 (g) \rightarrow \text{C}_3\text{H}_6\text{I}_2 (g)
\]

Bond breaking
- 1 mol C=C = 602
- 1 mol C–C = 346
- 6 mol C–H = 6 × 414 = 2484
- 1 mol I–I = 149

Bond making
- 2 mol C–C = 2 × 346 = 692
- 6 mol C–H = 6 × 414 = 2484
- 2 mol C–I = 2 × 213 = 426

Total energy put in = +3581 kJ

Total energy given out = –3602 kJ

\[\Delta H = 3581 - 3602 = -21 \text{ kJ mol}^{-1}\]
7. Hydrogen chloride can react with ethyne in a two-stage addition process to give a saturated product. Calculate the enthalpy change for this reaction using bond enthalpy values from the data book.

\[\text{C}_2\text{H}_2 (g) + 2\text{HCl} (g) \rightarrow \text{C}_2\text{H}_4\text{Cl}_2 (g) \]

Bond breaking
- 1 mol C\(\equiv\)C = 835
- 2 mol C–H = 2 \times 414 = 828
- 2 mol H–Cl = 2 \times 428 = 856

Total energy put in = +2519 kJ

Bond making
- 1 mol C–C = 346
- 4 mol C–H = 4 \times 414 = 1656
- 2 mol C–Cl = 2 \times 326 = 652

Total energy given out = −2654 kJ

\[\Delta H = 2519 - 2654 = -135 \text{ kJ mol}^{-1} \]
8. The data book gives the enthalpy of combustion of ethanol as $-1367 \text{ kJ mol}^{-1}$. Use bond enthalpies to calculate the enthalpy change for this reaction.

$$\text{C}_2\text{H}_5\text{OH} (\text{g}) + 3\text{O}_2 (\text{g}) \rightarrow 2\text{CO}_2 (\text{g}) + 3\text{H}_2\text{O} (\text{g})$$

Bond breaking

- $1 \text{ mol C} - \text{C} = 346$
- $5 \text{ mol C} - \text{H} = 5 \times 414 = 2070$
- $1 \text{ mol C} - \text{O} = 358$
- $1 \text{ mol H} - \text{O} = 458$
- $3 \text{ mol O} = \text{O} = 3 \times 497 = 1491$

Total energy put in $= +4723 \text{ kJ}$

Bond making

- $4 \text{ mol C} = \text{O} = 4 \times 798 = 3192$
- $6 \text{ mol H} - \text{O} = 6 \times 458 = 2748$

Total energy given out $= -5940 \text{ kJ}$

$$\Delta H = 4723 - 5940 = -1217 \text{ kJ mol}^{-1}$$
9. Calculate the enthalpy of formation for ethene using the enthalpy of sublimation and bond enthalpy values from the data book.

\[2\text{C (s)} + 2\text{H}_2 (g) \rightarrow \text{C}_2\text{H}_4 (g) \]

Bond breaking
- 2 mol C (s) → C (g) = 2 × 715 = 1430
- 2 mol H–H = 2 × 432 = 864

Total energy put in = +2294 kJ

Bond making
- 1 mol C=\text{C} = 602
- 4 mol C–\text{H} = 4 × 414 = 1656

Total energy given out = −2258 kJ

\[\Delta H = +36 \text{ kJ mol}^{-1} \]

10. The data book quotes the mean bond enthalpy for a carbon-to-carbon double bond (C=\text{C}) as 602 kJ mol\(^{-1}\). Use the enthalpy of formation given and bond enthalpies from the data book to calculate the enthalpy of the C=\text{C} bond in ethene.

\[2\text{C (s)} + 2\text{H}_2 (g) \rightarrow \text{C}_2\text{H}_4 (g) \]

\[\Delta H_{\text{formation}} = 52 \text{ kJ mol}^{-1} \]

Bond breaking
- 2 mol C (s) → C (g) = 2 × 715 = 1430
- 2 mol H–H = 2 × 432 = 864

Total energy put in = +2294 kJ

Bond making
- 1 mol C=\text{C} = x
- 4 mol C–\text{H} = 4 × 414 = 1656

Total energy given out = −(1656 + x) kJ

\[\Delta H_{\text{formation}} = 52 = 2294 – (1656 + x) \]

\[x = 52 = 2294 – 1656 = 586 \text{ kJ mol}^{-1} \]